Signal Sorting Algorithm of Hybrid Frequency Hopping Network Station Based on Neural Network
نویسندگان
چکیده
In non-cooperative frequency hopping communication system, the network station sorting of received hybrid signals plays an important role and becomes active research area in recent years. order to solve problem that currently widely used clustering algorithm cannot achieve satisfactory accuracy. this paper, we propose a signal method for stations by applying neural classify description words signals. Additionally, conjugate gradient is utilized training process improve convergence speed. Once finished, only one word input required obtain its own label real time. Simulation results demonstrate when compared with algorithm, proposed converges less iterations delivers better accuracy, especially low noise ratio environment.
منابع مشابه
The hybrid approach based on genetic algorithm and neural network to predict financial fraud in banks
Audit has become an essential topic in the world because there is much evidence about deliberate manipulations in the reports. One of the concerns in the field of audit is discovery and search of the financial statements and the high volume of bulk data. This study tried to suggest the appropriate method to detect these frauds due to the data which has been available and a proposed algorithm. R...
متن کاملThe hybrid approach based on genetic algorithm and neural network to predict financial fraud in banks
Audit has become an essential topic in the world because there is much evidence about deliberate manipulations in the reports. One of the concerns in the field of audit is discovery and search of the financial statements and the high volume of bulk data. This study tried to suggest the appropriate method to detect these frauds due to the data which has been available and a proposed algorithm. R...
متن کاملA New Approach for Investigating the Complexity of Short Term EEG Signal Based on Neural Network
Background and purpose: The nonlinear quality of electroencephalography (EEG), like other irregular signals, can be quantified. Some of these values, such as Lyapunovchr('39')s representative, study the signal path divergence and some quantifiers need to reconstruct the signal path but some do not. However, all of these quantifiers require a long signal to quantify the signal complexity. Mate...
متن کاملEstimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3062361